HW03 - Chemical Equilibria 1

Question 1
When the chemical reaction
$\mathrm{A}+\mathrm{B} \rightleftharpoons \mathrm{C}+\mathrm{D}$
is at equilibrium, which of the following is true?
both the forward and reverse reactions have stopped
neither the forward nor the reverse reactions have stopped
all four concentrations are equal
the sum of the concentrations of A and B equals the sum of the concentrations of C and D

Question 2 3pts

Explain why equilibrium constants are dimensionless.

They are dimensionless because the pressures or concentrations we put in are all for the substances in their standard states.

They are not really dimensionless, but we must treat them as such in order to be able to take $\ln (K)$ in the expression:
$\Delta G^{\circ}=-R T \ln K$
Activities (which are dimensionless) are actually what should be used in the mass action expression and therefore equilibrium constants. Concentration and pressure values are used in place of activities of species. Therefore true equilibrium constants have no units.

This is a trick question. Equilibrium constants have units that involve some multiple of atmospheres or moles per liter.

Question 3	3 pts
The expression for K_{c} for the reaction	
$4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 4 \mathrm{NO}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$	
at equilibrium is:	
$\frac{[N O]^{4}\left[H_{2} O\right]^{6}}{\left[N H_{3}\right]^{4}\left[O_{2}\right]^{5}}$	
$\frac{[\mathrm{NO}]\left[\mathrm{H}_{2} \mathrm{O}\right]}{\left[\mathrm{NH}_{3}\right]\left[\mathrm{O}_{2}\right]}$	
$\frac{\left[N H_{3}\right]^{4}\left[O_{2}\right]^{5}}{[N O]^{4}\left[H_{2} O\right]^{6}}$	
O $\left.\mathrm{NH}_{3}\right]^{4}\left[\mathrm{O}_{2}\right]^{5}$	

Question 4

3 pts

Consider the following reactions at $25^{\circ} \mathrm{C}$:

$2 \mathrm{NO}(\mathrm{g}) \rightleftharpoons \mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$	$\mathrm{K}_{\mathrm{c}}=1 \times 10^{30}$
$2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$	$\mathrm{K}_{\mathrm{c}}=5 \times 10^{-82}$
$2 \mathrm{CO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{CO}_{2}(\mathrm{~g})$	$\mathrm{K}_{\mathrm{c}}=3 \times 10^{91}$

Which compound is most likely to dissociate and give $\mathrm{O}_{2}(\mathrm{~g})$ at $25^{\circ} \mathrm{C}$?
© co
O No
($\mathrm{H}_{2} \mathrm{O}$
CO_{2}
Question 5

At $600^{\circ} \mathrm{C}$, the equilibrium constant for the reaction
$2 \mathrm{HgO}(\mathrm{s}) \longrightarrow 2 \mathrm{Hg}(\mathrm{I})+\mathrm{O}_{2}(\mathrm{~g})$
is 2.8. Calculate the equilibrium constant for the reaction
$0.5 \mathrm{O}_{2}(\mathrm{~g})+\mathrm{Hg}(\mathrm{I}) \longrightarrow \mathrm{HgO}(\mathrm{s})$
1.7
0.60
1.1
0.36

Question 6

Consider the reaction
$2 \mathrm{HgO}(\mathrm{s}) \rightleftharpoons 2 \mathrm{Hg}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g})$
What is the form of the equilibrium constant K_{c} for this reaction?
$[H g]^{2}\left[O_{2}\right]$
$\frac{\left[\mathrm{O}_{2}\right]}{[\mathrm{HgO}]^{2}}$
$\frac{[H g]^{2}\left[O_{2}\right]}{[H g]^{2}}$
[$\left.O_{2}\right]$
$\mathrm{K}_{\mathrm{c}}=2.6 \times 10^{8}$ at 825 K for the reaction
$2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{S}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$
The equilibrium concentration of H_{2} is 0.0020 M and S_{2} is 0.0010 M . What is the equilibrium concentration of $\mathrm{H}_{2} \mathrm{~S}$?

- 10 M
1.0 M
0.10 M
0.0010 M

Question 8
Consider the reaction below
$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})$
At 1000 K the equilibrium pressures of the three gases in one mixture were found to be
0.562 atm $\mathrm{SO}_{2}, 0.101$ atm O_{2}, and 0.332 atm SO_{3}. Calculate the value of K_{p} for the
reaction.
3.46 0.171 0.289 2.64

Question 9
Consider the following reaction:
$2 \mathrm{NO}(\mathrm{g})+\mathrm{Br}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NOBr}(\mathrm{g}) \quad \mathrm{K}_{\mathrm{p}}=2.40$ @ 373 Kts
Calculate K_{c} for this reaction at $100^{\circ} \mathrm{C}$.
73.5
7440
19.0784

